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Abstract— This paper aims to provide a basis for geometrical          
analysis of districting techniques. I also include an analysis of          
different compactness measures in the Markov Chain Monte        
Carlo (MCMC) techniques used in current computational       
redistricting literature from Chinka et al. [1]. 
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I. INTRODUCTION 
 
Redistricting and gerrymandering have become     

increasingly controversial topics in recent years.      
Technology has allowed redistricting officials     
increased control and searching power over a broad        
spectrum of plans and associated metrics, allowing       
them to re-draw voting districts that suit their goals.         
The U.S. Supreme Court plans to take two cases in          
the next year [2] [3] centered on proposals for new          
anti-gerrymandering metrics and will consider the      
question of whether partisan gerrymandering is      
justiciable.  

Courts have continually asked for a unified       
metric to define gerrymandering, but there is no        
consensus on such a metric. In addition, the number         
of possible district plans is so large that finding         
global optima under a single metric is       
computationally infeasible. Therefore, researchers    
from Pittsburgh and CMU have presented Assessing       
significance in a Markov chain without mixing [1],        
in which they use statistical techniques to reject the         
null hypothesis that a specific district plan was        
chosen from the stationary distribution of a Markov        
Chain. If a district plan is not chosen from the          
stationary distribution, it is likely the district map        
was made with some partisan intent.  

 

II. DATA USED AND DEFINITIONS 

The data in this paper is from Pennsylvania        
congressional district maps where each district is a        
combination of precincts. In the 50 U.S. states,         
the number of precincts is about 2 orders of          
magnitude larger than the number of districts.       
Pennsylvania has 19 districts and about 9,000       
precincts. This analysis could easily extend to       
census tracts, census block groups, or other levels        
of granularity. 

A valid districting plan for a state is one that is           
simply connected, retains low population     
differences between districts (less than 2% in this        
case) and adheres to some test of geometrical        
compactness.  

 

III. GEOMETRY OF REDISTRICTING 

 
A foundational part of the current research in        

computational redistricting is called the 1-flip      
operation. If districts A and B share a border, the          
1-flip operation flips a precinct in district A to         
district B. Given an initial districting, this operation        
is used to explore valid alternative plans stemming        
from the initial seed. 

The geometry of these precinct graphs is       
important when using techniques like Markov      
Chain Monte Carlo (MCMC). MCMC aims to       
explore the “configuration space” of valid district       
plans. The configuration space is a graph where        
each node corresponds to a district plan, and each         
edge between plan and plan means that using          
a 1-flip operation on  gives . 
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It follows that connectivity of this space is an         
important question. If the configuration space is not        
connected, it would be possible to choose a seed         
district plan from a small subspace of the full         
configuration space. Appendix 1 contains an outline       
of a proof that the configuration space is connected         
under the 1-flip operation. That is, any valid district         
plan is achievable by using 1-flip operations from         
any seed district plan. 

IV.MCMC FOR REDISTRICTING 

 
MCMC is a sampling technique for exploring a        

large state space in limited time. In general terms, it          
operates in steps on a graph with transition        
probabilities between nodes. After $$n$$ steps,      
there is probability to be at state $$s$$. If          
the configuration space is connected and the chain        
is ergodic, as the number of steps goes to infinity,          
the Markov Chain converges to the stationary       
distribution.  

In the districting problem, as defined by [1], each         
state in the chain is a district plan for a precinct           
map, and a step in the chain is an application of the            
1-flip operation. Due to the large configuration       
space, convergence of the Markov Chain to the        
stationary distribution is not guaranteed in a finite        
amount of time, and current applied MCMC       
implementations have not shown convergence. To      
address this issue, [1] proposes to use MCMC        
techniques to sample from the space to produce an         
ensemble of valid district plans, without requiring       
convergence or full state space exploration.  

Sampling from many valid plans provides a basis         
to critique individual plans using statistical analysis       
of traditional anti-gerrymandering metrics.  

V. COMPACTNESS & VISUALIZATIONS 
Using the package from [2], I have aggregated        

visualizations of the Markov Chain operating under       
different compactness constraints over time. These      
visualizations can help researchers gain a better       
understanding of how different constraints affect      
the result of the randomized 1-flip operation in the         
Markov Chain. 

In addition, I extended the package to include a         
new discrete constraint proposed by Moon Duchin       
[4] based on total population of the district and the          
population of its boundary district(s). This measure       
aims to help standardize measures of compactness       
across different states.  

It resembles the traditional and widely cited       
Polsby-Popper Metric, which takes values between      
0 and 1:  

 
Where is the total area of the district and is            

the perimeter of the district. Under this metric, 0         
represents thread-like objects, and 1 represents      
circles. Because this measure is normalized, it       
seems intuitive to compare Polsby-Popper measures      
for different states with each other, but factors like         
state geography and population differences make      
these measures uncomparable.  

The discrete metric instead uses population on the        
perimeter (dp) of the state versus the total        
population of the state (dA).  

 
As with other compactness metrics, the goal is to 

maximize compactness. Therefore, under the 
discrete metric, the goal is to maximize the interior 
population of a district and minimize the boundary 
population. Unlike Polsby-Popper, this metric is not 
constrained between 0 and 1. Therefore, it carries 
better comparison utility across state lines.  

Accompanying this paper are visualizations     
designed to help to compare these compactness       
measures with each other using data from the 2017         
PA congressional district map. [7] Specifically,      
visualizations are provided for the evolution of the        
district map under MCMC with four measures: no        
compactness constraint, the norm, norm of        
Polsby-Popper, and under the discrete metric.  

These metrics each encourage good individual      
districts, but do not discourage bad districts enough.        
Therefore, we use the inverse of each of these         
metrics to ensure that each district in the plan is          
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compact by penalizing the score heavily for any        
single districts. 
 

VI.FUTURE WORK 
Geometry, Graphical Analysis 
I have claimed that the configuration space of        

possible districtings for precinct map redistricting is       
connected under the 1-flip operation for abstract       
connected graphs, but ignored requirements that      
each intermediate step has equal population or is        
compact. In fact, the current proof of connectedness        
relies on wildly unbalanced districts.  

In order to prove connectedness of the space        
under the method proposed in [1], we must also         
enforce <2% population differences, and some      
compactness constraint. One idea of a place to start         
here is by assuming the precinct graph is a         
triangulation, and that each precinct has equal       
population. 

Is every state’s precinct connectivity graph a       
triangulation (or easily made a triangulation by       
adding dummy nodes)? Triangulations are planar      
graphs that have many useful properties for       
analysis. This would be a good first step in any          
attempt to prove connectedness of the configuration       
space under compactness and population     
requirements. 

What is the subgraph structure of the state        
graphs? Are there some kinds of subgraph       
isomorphisms we can find amongst the states that        
behave similarly under 1-flip? In the precinct graph,        
are there high degree precincts in cities? In the         
country? 

 
Visualization 
As described in GEOMETRY, two points in the        

configuration space are connected under the      
definition of the 1-flip operation. It would be useful         
to apply visualization techniques to the      
configuration space. Visualization of this space      
could help to get an idea of possible clusterings,         
transition states between clusters, and to visually       
analyze the connectedness of the space. A good        
starting point is from [6]. This paper shows        

visualization techniques applied to exploring graphs      
that change over time.  

 
Metrics 
The new discrete metric has comparability and       

geographic independence advantages over the     
traditional Polsby-Popper Metric. What are the side       
effects of the discrete metric? For example, because        
the metric penalizes a district for large population        
on the boundary, the discrete metric aligns with the         
traditional redistricting principle to not cut through       
urban centers. 

 
MCMC Sampling 
Because of the large configuration space, it is        

infeasible to aim for convergence to the stationary        
distribution in MCMC sampling. How small does       
our dataset have to be to guarantee complete        
enumeration in a reasonable amount of time? What        
is the mixing time in these small examples? How         
does the mixing time relate to the number of         
precincts and districts? 

What is the curvature of the configuration space        
for redistricting plans? Is it positively curved or        
negatively curved? 

Legal  
Some important questions to keep in mind: Do        

my techniques help me implement case law? Can I         
make the case that I have performed a best-effort         
implementation of current case law? Why is the        
current plan or proposal lacking?  
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APPENDIX  

SECTION 1  

This section contains an outline of the connectedness under 1-flip operation.  

Conjecture: Graphs without a forbidden configuration (cut-vertex with 3 or more 
split-components) have connected configuration space under the 1-vertex flip operation.  

This forbidden configuration is shown below. Consider a 3-precinct, 2-district state. In this 
picture, where each node is a precinct, each edge between these nodes implies connectivity, and 
the lines across these edges are district split lines. Because a district must be simply, connected, 
the configuration space of this graph is not connected, as flipping the cut-vertex over the district 
line would lead to a disconnected district on the starting side.  

In order to extend this to real state examples, each of the leaf nodes is allowed to contain a 
subgraph beyond them of arbitrary size, but it is important that these subgraphs do not connect to 
one another. This configuration has not been searched for in any of the state precinct graphs as of 
the writing of this paper. 

 

 

This configuration can be solved by adding dummy nodes (fake precincts) with population zero 
to change the near-triangular precinct map into a full triangulation (where this forbidden 
configuration occurs). 

Algorithm strategy: Let  be initial partition and  the desired partition. 

Construct the district adjacency graph for . Take a non-cut-vertex and a district in  with 
non-empty intersection. Transform the desired district in  getting a new valid partition  
which has one identical district as . Delete the district and recurse. 

Compute the color class adjacency graph of the target partition. 

Compute the block-tree of the input graph and take a leaf. This must be a 2-connected subgraph. 

Compute the SPQR tree of such subgraph. 

If there is an R node. choose any vertex of this node. 
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If not, then the graph is series-parallel. Choose a leaf of the SPQR tree that is a S node and 
choose a vertex of the chain (guaranteed to exist, since its an S node). 

One of the color classes must contain this vertex. Contract this color class along a spanning tree 
and delete this vertex.  

This procedure does not create a forbidden cut-vertex. 

Repeat  times until we have only 1 color class. 

Do this for both initial and target and we get a path in the configuration space by reversing the 
sequence of moves for the target. 

Upper bound in the number of moves: . 

This proof was created in collaboration with the Tufts University computational geometry study 
group. 
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